Hellenic Engineers Society London 8th November 2011

Service Experience of MAN B&W Two-stroke Diesel Engines

Stig B. Jakobsen

Senior Manager Low Speed – Operation

All data provided on the following slides is for information purposes only, explicitly non-binding and subject to changes without further notice.

Service Experience of MAN B&W Two-stroke Diesel Engines

- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

Service Experience of MAN B&W Two-stroke Diesel Engines

- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

Total Cost of Ownership of Marine Propulsion Engines

Example: Large Bore MAN B&W 2-Stroke Engine

	40% Load Average	80% Load Average
Investment Cost	100%	100%
Operating Cost/year:		
- Fuel	100%	200%
- Cylinder Oil	1.3%	2.6%
- System Oil	0.3%	0.3%
- Overhaul Cost	0.5%	0.5%
- Spare Parts	3.5%	3.5%
Scrapping	?	?

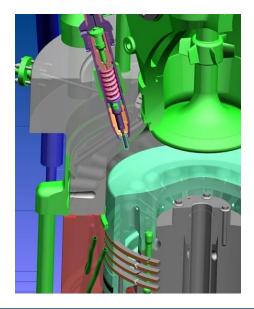
Total Cost of Ownership of Marine Propulsion Engines: Investment Costs

Constant Focus on First-Cost Cost-Down Example: Low Force Exhaust Valve

Potential First Cost Saving: 200,000 USD for a 12K98ME/ME-C Engine

Total Cost of Ownership of Marine Propulsion Engines: Operating Costs, Fuel

Fuel Costs:


- Extremely Dominating over the Lifetime of a Propulsion Plant
- In Tier 2 version ME-engines have 2-3 g/kWh lower SFOC when comparing to corresponding MC-engines
- Background for introduction of the fuel optimised
 Tier 2 engines (dot2 engines) with SFOC 1-2 g/kWh lowered
- Reason for increased focus on low load and part load tuning
- Autotuning

However: In many cases the traditional split of costs between ship-owners and charterers limits the optimisation of the propulsion plant (as example WHR systems)

Total Cost of Ownership of Marine Propulsion Engines: Operating Costs, Cylinder Oil

- Combustion Chamber optimised for low SLOC
- Alpha Lubricator with ACC secures minimum SLOC

Recent Service Experience: MAN B&W 2-stroke engines maintain stable cylinder condition with minimum SLOC at low load both with and without T/C cut out

Total Cost of Ownership of Marine Propulsion Engines: Operating Costs, Overhaul&Spares

Service Letter SL09-509/SBJ

However please note our

SL07-483/HRR concerning

Condition Based Overhaul

For Large Bore Engines:

MAN Diesel

MAN

Action code: WHEN CONVENIENT

Guiding Overhaul Intervals Updated Tables

SL09-509/SBJ April 2009

Concerns

Owners and operators of MAN B&W two-stroke diesel engines. Type: ME/ME-C, ME-B and MC/MC-C

Overhaul intervals for Dry Cargo Vessels can be largely extended in general to more than 32,000 hours

Dock to dock without major overhauls is possible for Tankers

Total Cost of Ownership of Marine Propulsion Engines: Operating Costs, Overhaul&Spares

Service Letter SL09-509/SBJ

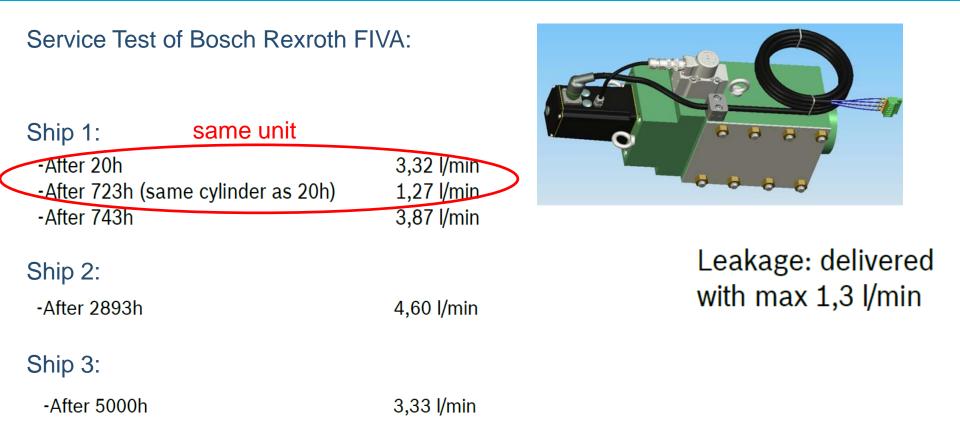
MAN Diesel

ME/ME-C engines Guiding overhaul intervals and expected service life

Component	Overhaul interval (hours)	Expected service life (hours)	Remarks
Main hydraulic pump	32,000	Engine lifetime	Check and replace hydrostatic bear- ings at overhaul. Check and replace cylinder set and piston if required.
Proportional valve for main hydraulic pump		20,000	Replace valve after 20,000 hours
Pressure relief valve for main hydraulic pumps	40,000	Engine lifetime	Replace sealings at overhaul
Exhaust valve actuator	32,000	Engine lifetime	Replace static sealing rings at over- haul.
FIVA valve	32,000	64,000	Check and replace if required
Fuel valve	8,000 - depending on fuel quality	Valve nozzle 16,000 Spindle guide 16,000	Check and replace if required
Fuel oil pressure booster	32,000 - based on engine observations	64,000 Replace or recondition	Change piston rings on hydraulic pis- ton and suction valve at overhaul.

Action code: WHEN CONVENIENT

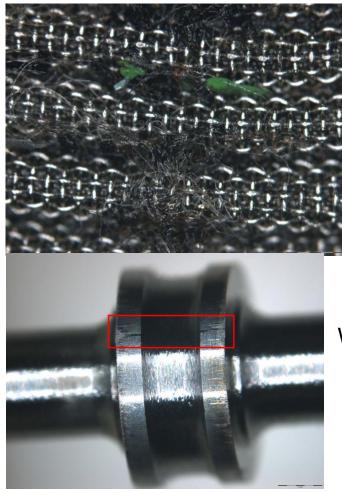
Guiding Overhaul Intervals Updated Tables


SL09-509/SBJ April 2009

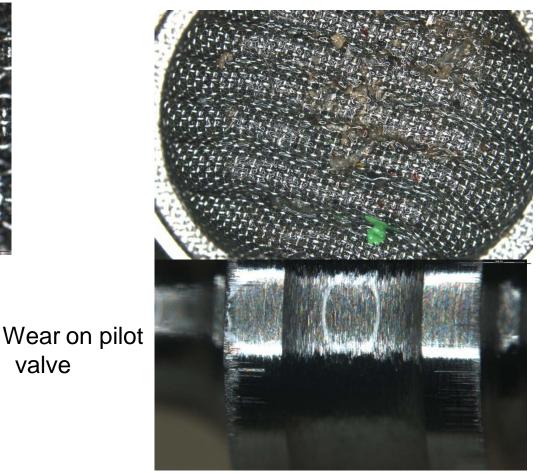
Concerns

Owners and operators of MAN B&W two-stroke diesel engines. Type: ME/ME-C, ME-B and MC/MC-C

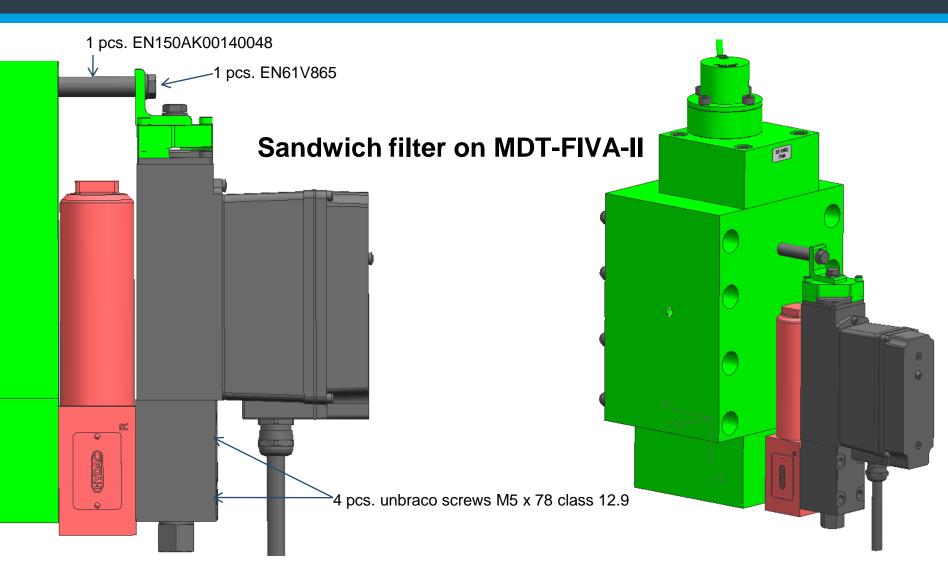
Damage to Pilot Valves on FIVA's During Commissioning Period



Damage to Pilot Valves on FIVA's During Commissioning Period


valve

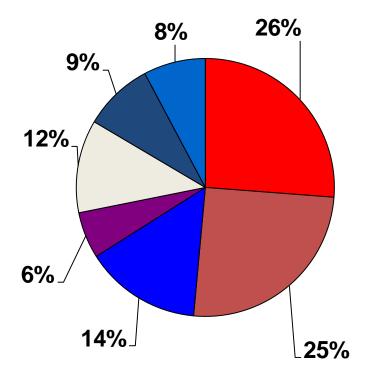
- Ship 1
- Painting,rubber and ??


- Ship 2
- Painting, metal particles and ??

MAN Diesel & Turbo

Damage to Pilot Valves on FIVA's During Commisioning Period

Service Experience of MAN B&W Two-stroke Diesel Engines



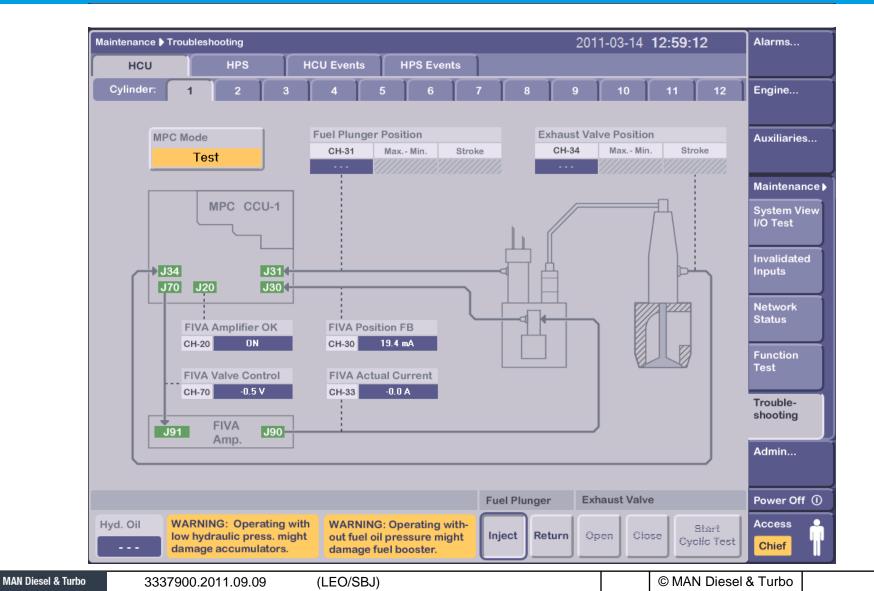
- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

Reliability of Electronics

<u>Multi Purpose Controller (MPC) Failures</u>

- No failures found
- Timing(FPGA)
- Components
- Tolerances
- PCB or soldering
- Overload
- Cause not found

ME Engines in Service Software Improvements



ME-ECS 0905-8 compared to ME-ECS 0510-12

- Commissioning Screen for HCU, Tacho and HPS
- Trouble Shooting Screens for HCU and HPS
- Data logger for HCU and HPS
- Export of HCU and HPS data logger data to Excel
- ECS isolation monitoring and alarms
- Electrical noise monitoring and alarm
- Alarm improvements, grouping of related alarms

Trouble Shooting Screens for HCU

Data Logger for HCU

Main	tenance 🕨	Troubleshooting	g				201	1-03-14 13 :	06:17	Alarms		
	нси	НР	rs i	HCU Events	HPS Event	s				Triggoro		wort
	CCU	Date	Time			Sequen	ce			Triggere	ed by e	event
	CCU1	2011-03-14	13:04:15	CCU5	2011-03-07 12:4	48:13 (030431#	illegal ELFI/FI	VA Position (SI	lw.Dw))			
E	CCU1	2011-03-14	13:03:45							Auxiliaries		
	CCU5	2011-03-07	13:31:25	20000								
	CCU5	2011-03-07	13:28:38	15000						Maintenance	•	
	CCU5	2011-03-07	13:28:15							System View I/O Test		
	CCU5	2011-03-07	12:48:13	10000						1/O Test		
	CCU5	2011-03-07	12:40:55	5000			nnnnn			Invalidated Inputs		
	CCU5	2011-03-07	11:03:43		╵┦┩┦┦╢╢	┦╢┦╢╢╢╢	┢╋╇╋╇	ļ		inputs		
#	Ch	annel descript	tion	0 •		,,,,,,,,	111111			Network Status		
	• FIV	A Set Point		-5000	dddddd	તેતેનેતેને	(ddddda	┟┦┎┦┎┨┎┨	₽₽₽₽₽	otatus	J	
2	• FIV	A Feedback (Ch30		I N N N N N N N N					Function Test	1	
3	• FIV	A Controller (Ch70	-10000						1000	J	
4	• Plur	ger Position	Ch31	-15000						Trouble- shooting		
5	Exh	austvalve Pos	sition Ch34								IJ	
6	Tack	no Angle Cyl .	1	-20000 <u>-</u> 0.0	2.0	4.0	6.0	8.0	10.0	Admin		
7	0			0.0	2.0	1.0	0.0	0.0	[Sec]			
										Power Off		
	•			Shor Seque		Zoom to Fit		Log Manually	Export	Access Chief		
											-	

MAN Diesel & Turbo

3337901.2011.09.09 (LEO/SBJ)

© MAN Diesel & Turbo

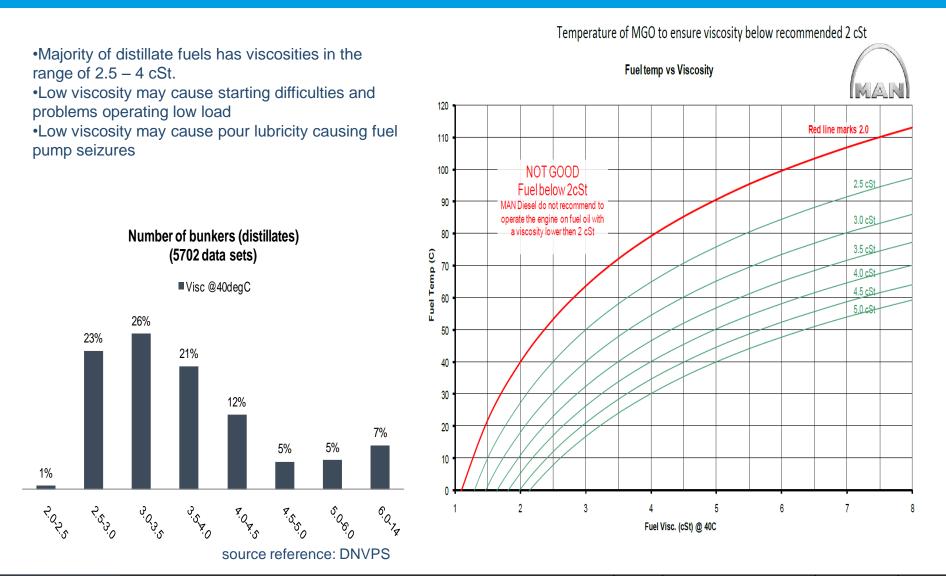
Data Logger for HCU

Maint	enance 🕨	Troubleshooting)					2011-03-14	13:03:38		Alarms
	нси	НР	'S F	ICU Even	ts HPS	Events					
	CCU	Date	Time			Se	quence				Engine
A	CCU5	2011-03-07	13:31:25	ſ							
E	CCU5	2011-03-07	13:28:38								Auxiliaries
	CCU5	2011-03-07	13:28:15								
	CCU5	2011-03-07	12:48:13	80.0							Maintenance
	CCU5	2011-03-07	12:40:55								System View I/O Test
	CCU5	2011-03-07	11:03:43								
	CCU5	2011-03-07	11:03:11	60.0							Invalidated Inputs
~	CCU5	2011-03-07	11:02:39								
#	Ch	annel descript	ion	40.0							Network Status
1											
2											Function Test
3				20.0							
4											Trouble- shooting
5											
6				0.0 0.		opuollu	o otivot		 80.0		Admin
7					Orm	anually	activat	.ea	[5	Sec]	
Sele	ct cylind	er to log manua		1	10		1		1	4	Power Off ①
1	:	2 3	4	5	6 7	8	9 10	11	12	X	Access O Chief

MAN Diesel & Turbo

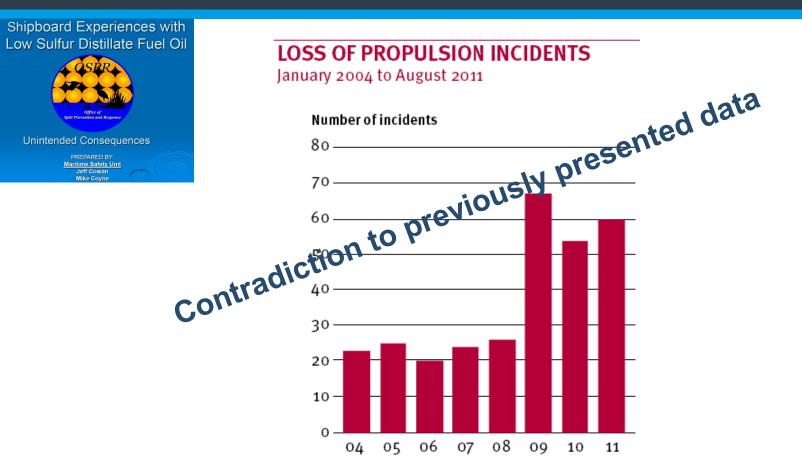
3337903.2011.09.09 (LEO/SBJ)

© MAN Diesel & Turbo


Service Experience of MAN B&W Two-stroke Diesel Engines

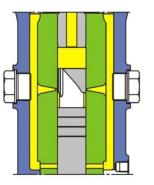
- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

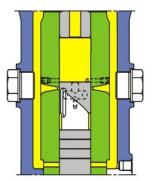
Challenges burning clean fuel: •Low viscosity of gas oil causing starting difficulties •Low lubricity causing fuel pump seizures •High "cat-fines" content especially seen on SECA-fuels •Cylinder Oils for low or no sulphur fuels



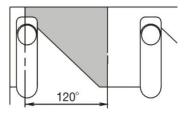
	Experiences with r Distillate Fuel Oil	Cha	llenç	ges k	ourni	ing c	lean	fue	1:		11 outble Tot	ala in 20	
spa	Office of II Prevention and Response	LOSS	S OF	PR			NC			Month	Monthly Tota		Switching Related
	d Consequences									Jan – June 2009	21		
Ma	Aritime Safety Unit Jeff Cowan Mike Coyne		INC		NTS					Jan – June 2009 Jul-09	21 13		9
			200	Λ	201	10				Aug-09	8		4
										Sep-09	9		5
			(as	of Oct 1	, 2010)					Oct-09	8		3
										Nov-09	3		2
	Port		2004	2005	2006	2007	2008	2009	2010	Dec-09	5		4
										Totals	67 <u>33</u> Monthly Totals in 2010		
	San Francis	sco	15	11	10	10	12	37	17				
	Los Angele	s /		40	2 6	14	14	28	40		Total Loss of Pro Incidents		Loss of Propulsion - Fuel Switching Related
	Long Beacl	h	8	12					10	Jan-10	5		1
										Feb-10	3		0
	San Diego		0	1	3	0	0	0	2	Mar-10 Apr-10	3		2
	Santa Barbara 0 1 0 0 0 2 1						1	May-10	4		0		
	Humboldt		0	0	1	0	0	0	0	Jun-10	2		0
										Jul-10	3		2
	Total per ye	ar	23	25	20	24	26	67	30	Aug-10 Sep-10	1		0
										Totals	30		6

Source: US Coast Guard

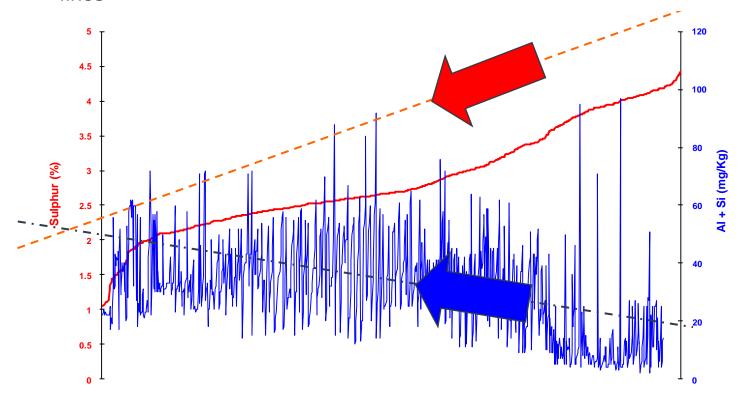



The new CARB rules have lead to an increase in cases of starting difficulties after change over to distillate fuel.

However, such cases is "just" the result of worn fuel pumps, due to neglect of qualified performance check.


Fuel pumps must be overhauled before the index has increased 10% in relation to test bed condition.

Fuel pump high pressure leakage mainly generated at cut off holes:



MAN Diesel prepares a Service Letter for "re-learning" of performance check to judge fuel pump wear

Challenge of Low sulphur HFO; the lower sulphur the more catfines

Source: DNVPS database of 1,012 analysis results (from 1 October – 10 November 2007)

Replica technique:

- The density of cat-fines was found extremely high, with up to 3,000 / cm².
 Acceptable level is below 200 / cm² !
- The sizes vary from 5µm to 15 µm with a smaller number of "big" cat-fines in a range of 20 – 25 µm.

6

 This is a result of inefficiently working centrifuges.

Additive control at low sulphur running:

- How does over-additivation harm the cylinder condition?
- Over-additivation lead to mechanical- and chemical bore polish
- Bore polish lead to micro-seizures and latent risk of scuffing
- Running more then 1 2 weeks in SECA area, it is recommended to change to a lower BN cylinder oil (BN40 – 50 cylinder oil)

Extended CARB regulations will require BN12 – 20 Cylinder Oils!

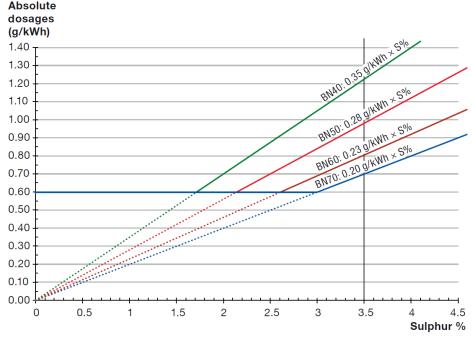


Fig. 1: Recommended cylinder lubrication feed rate as a function of the fuel oil sulphur content for selected lubricating oils (BN40-BN70)

Service Experience of MAN B&W Two-stroke Diesel Engines

- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

MAN Diesel & Turbo

Low Load Operation Service Tests

Low load tests 7K80MC-C 9K98ME-C

12K98MC-C

10% load 20-22% load 10% load Sep. 2009 Mar. 2008 Oct. 2009

Container ship Container ship Container ship

<u>T/C cut out tests</u> 12K98ME 10K98MC-C 12K98MC

9K90MC-C

swing gates, ABB T/C swing gates, MET T/C blind plates, MET T/C blind plates, MAN T/C Container ship Container ship Container ship Container ship

Low Load Operation Service Feedback

Two Stroke Low Load Operation Inspection report template (SL09-511)

MAN Diesel

MAN Diesel

Two Stroke Low Load Ope

The purpose of this report is to de document the service experience engine load.

The reports should be used to op engine load up for cleaning of boi space, and with regard to cylinde The report should preferably be n 4 times a month. This could be re

Below items should as minimum

Date of inspection Vessel name IMO number Engine Builder / Number Engine Type: Main engine running hours: Load range [%]:

Pictures, as shown as examples, should be added.

Inspection area #1: The non-ret valves in the scavenging air recei should be photographed. Comment:

Inspection area #3: The drain line from the buffer spaces should be photographed. Inspection area the top land shou Comment:

Inspection area #7: The exh. valves should be photographed from the exh. gas receiver side *Comment:* Inspection area

exhaust gas boile

Comment:

MAN Diesel

Picture examples from the turbochargers are not available, but in some cases it is possible to have a view of the nozzle ring and maybe the turbine blades from the exh. gas receiver side, through the safety grid. Please supply pictures from this if possible.

Information regarding operation, maintenance and observations during low load operation:

- During low load operation for longer periods, were there any changes in engine load in order to 'clean' the engine and exhaust gas ways? Answer: aa
- Was it necessary to increase the maintenance intervals during low load operation? (Cleaning of receivers, turbochargers, boilers ect.) Answer: bb
- If temperature indication is available after the boiler this should be reported in order to evaluate acid corrosion in the boiler and funnel. Answer: cc
- What was the specific cylinder lube oil consumption and was the level of cylinder lubrication satisfactory? Answer: dd
- Are the auxiliary blower running at the stated engine load? Answer: ee
- Were any changes made to temperature/viscosity of the HFO? Answer: ff
- Were any problems experienced during low load operation? Answer: gg
- Based on your experience, do you have any recommendation regarding low load operation? Answer: hh

A performance observation at the stated load and a full scavenge port inspection (picture report of all cylinders) would be expedient for the further evaluation; however this must be based on the available time and necessity judged by the crew.

MAN Diesel & Turbo

Low Load Operation Service Feedback

Feedback reports (21)

1)	8S50MC	14% load	Container ship
2)	7L70ME-C	20-30% load	Container ship
3)	7L70ME-C	25-40% load	Container ship
4)	6S70MC-C	30-35% load	Bulk carrier
5)	7S70MC-C7	10% load	Tanker
6)	8K80ME-C	30% load	Container ship
7)	8K80ME-C	23% load	Container ship
8)	8K80ME-C	10% load	Container ship
9)	8K80MC-C	14-20% load	Container ship
10)	8K80MC-C	35% load	Container ship
11)	8K80MC-C	30-50% load	Container ship
12)	7L80MC	30% load	Container ship
13)	7K90MC-C	13-30% load	Container ship
14)	8K90MC-C	20-34% load	Container ship
15)	10K90MC	20-22% load	Container ship
16)	10K90MC	20% load	Container ship
17)	10K90MC	20% load	Container ship
18)	12K90MC	30% load	Container ship
19)	9K98MC-C	12-25% load	Container ship
20)	12K98MC-C	30% load	Container ship
21)	12K98MC	14-21% load	Container ship

Low Load Operation Service Test

General experience from the tests:

- No significant change in fouling condition of exhaust gas ways
- Slightly increased fouling in scavenge air space
- Apparently too high cylinder oil feed rate at <25% load</p>

Service test (Sep. 2009):

- Engine: 7K80MC-C (3 years old)
- Test duration: 3 days on 10% load
- No engine load up

Conclusion

No significant change in fouling condition of exhaust gas ways

Inspection after 1-day test

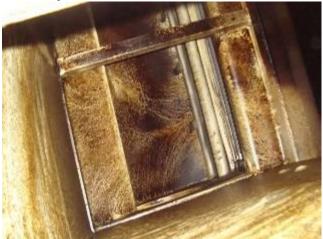

Inspection before test

Inspection after 1-day test

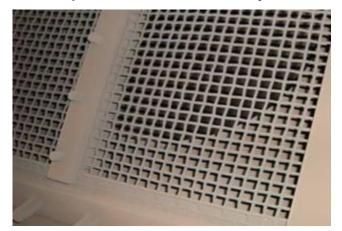
Inspection before test

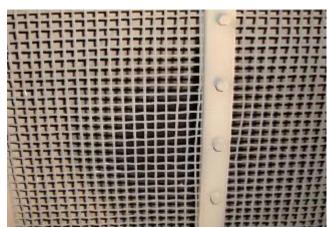
Inspection after 1-day test

Inspection before test



Inspection after 1-day test


Inspection before test



Inspection after 1-day test

Inspection before test



Inspection after 1-day test

Inspection before test

Service feedback report (Oct 2009):

- Engine: 8K90MC-C (1 year old)
- Test duration: 21 days on 20-34% load
- Engine load up every second day to 75% load

Conclusion

No significant change in fouling condition

Sample pictures:

Scavenge air receiver

Cylinder unit 1

Exhaust receiver / boiler top

C/E's remark :

Was it necessary to increase the maintenance intervals while slow steaming? (cleaning of receivers, buffer spaces, T/Cs, boilers, etc?)

After 509 hrs of slow steaming we do not see the dire necessity of cleaning it. Did not find any abnormalities or signs of over-lubrication. Sludge amount in the corners and on the walls was normal.

Service feedback report (Jan 2009):

- Engine: 8S50MC (17 years old)
- Retrofitted with Slide Fuel Valves
- Load: 15% load
- Engine load up every day (to 10,000 TC rpm)

Conclusion

No change in fouling condition

Sample pictures:

Scavenge air receiver

Cylinder unit 1

Exhaust receiver / boiler top

C/E's remark :

 Did you experience any problems related to the slow steaming operation? Answer: NO

Feedback from vessels

General comment:

No problems observed

Comments on C/E's experience gained (from the 21 reports):

- engine load up considered essential
- less mechanical stress on engine is expected to have positive influence on maintenance of the engine
- more often cleaning of the scavenge air receiver —
- boiler seems to be more clean
- more frequent cleaning of boiler and scavenge air space considered necessary
- Alpha lubes have too high feed rate <25% load
- too little fresh water production —
- scavenge air space more dirty
- increased wet deposits in scavenge air receiver —
- 4-day load up interval ok
- more soot in exhaust receiver and on boiler top.

General recommendations

- Service letter: SL09-511
- Service letter: SL11-544
- Inspection report template

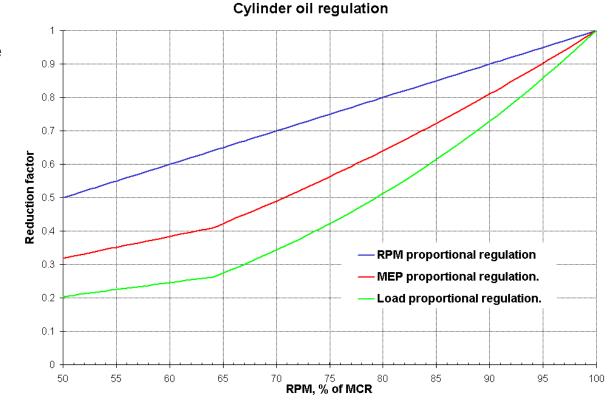
Action code: WHEN CONVENIENT	Action code: WHEN CONVENIENT	MAN Diesel	MAN
Low Load Operation 10% to 40% Engine Load	Low Load Operation 2011 Update	Two Stroke Low Load Operation - In The purpose of this report is to define the net document the service experience gained duri engine load. The reports should be used to optimise the lo engine load up for cleaning of boiler and turb space, and with regard to cylinder lubrication The report should preferably be made before	cessary inspection areas in order to follow ar ing continuous engine operation below 50% ow load operation procedures with regard to ocharger, cleaning of scavenge and exhaust optimisation.
SL09-511/MTS	SL11-544/MTS June 2011	4 times a month. This could be reduced with Below items should as minimum be noted an	experience and unchanged load pattern.
May 2009 Concerns Owners and operators of MAN B&W two-stroke marine diesel engines. Type: MC/MC-C and ME/ME-C	Concerns Owners and operators of MAN B&W two-stroke marine diesel engines. Types: MC/MC-C and ME/ME-C/ME-B	Vessel name : M// IMO number : 900 Engine Builder / Number : xxx Engine Type: : 12/	
Summary Long-term low load operation down to 10% engine load is generally possible with appropriate precautions and without major modifications. For application with 3-4 turbochargers, MAN Diesel recommends installation of a turbocharger cut-out system.	Summary Feedback on low-load operation from the operators has generally been posi- tive. Only a few issues have emerged, but have been dealt with by few coun- termeasures.	valves in the scavenging air receiver s	nspection area 9 2: The buffer space area area theoutile photographed.

MAN Diesel & Turbo

(LEO/SBJ)

© MAN Diesel & Turbo

Operating at low engine load, below 40%, can create issues in relation to:


- Cylinder lubrication
- Continuous operation of auxiliary blowers
- Increased stress on flap valves in scav. receiver

Cylinder Lubrication

For engines with Alpha lubricators (lubrication as a function of engine load), significant savings can be made on cylinder lube oil consumption

80% RPM of MCR results in a reduction of 50%

Super Slow Steaming (SSS) **Service Experience**

From SL11-544 – June 2011

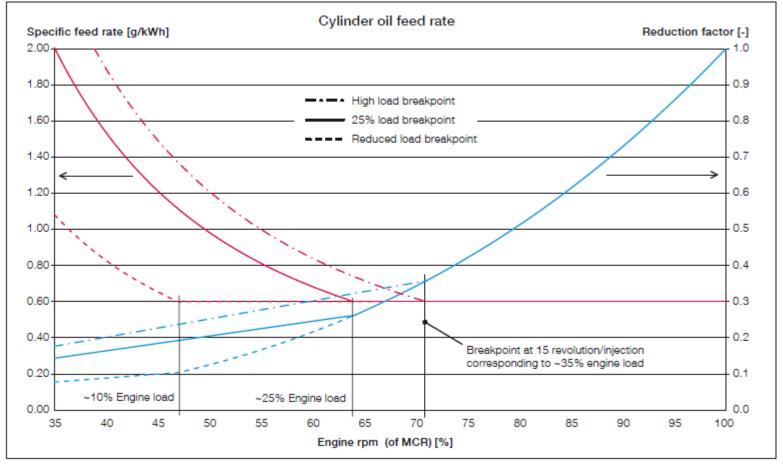


Fig. 3: Alpha Lubricator feed rate algorithm

Easy Low Load Optimization for ME-Engines

Cylinder Lubrication - Alpha Lubricators

During operation at low load it has been experienced that overlubrication can happen, due to layout of lubricators.

Countermeasures

- Retrofit of lubricator pistons with reduced diameter
- Modification of lubricator by reducing piston stroke

Operating at low engine load, below 40%, can create issues in relation to:

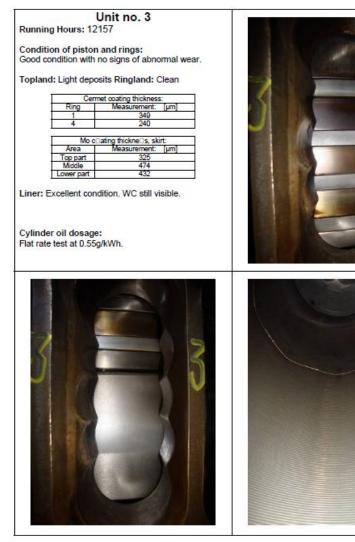
- Cylinder lubrication
- Continuous operation of auxiliary blowers
- Increased stress on flap valves in scav. receiver

Service Experience of MAN B&W Two-stroke Diesel Engines

- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

7K80ME-C9.1: Cylinder Condition

Running Hours: 12157 Condition of piston and rings: Good condition with no signs of abnormal wear. Topland: Light deposits Ringland: Clean Cermet coating thickness: Measurement: [µm] 247 Mo coatino thickness, skirt: Area Measurement: [µm] Top part Middle 344 277 Lower part Liner: Excellent condition. WC still visible. Cylinder oil dosage: Flat rate test at 0.55g/kWh.


3337941.2011.09.09

(LEO/SBJ)

MAN Diesel & Turbo

Details, scavenge port inspection:

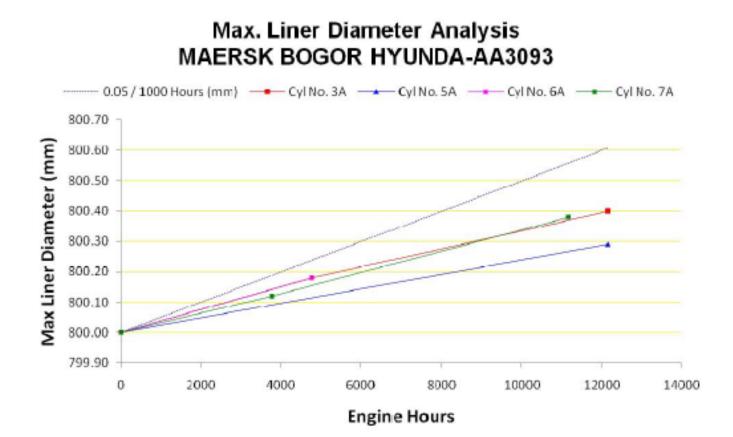
Unit no. 1

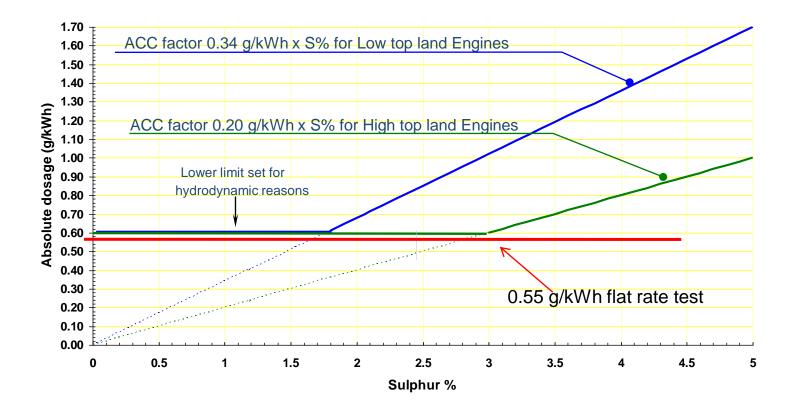
© MAN Diesel & Turbo

7K80ME-C9.1: Cylinder Condition

Cylinder unit No. 3 running surface:

Cylinder unit No 3 was inspected and found in good condition. On this unit a test with soft delivery cylinder lubrication is active.


The liner surface was found to be smooth, wth no indication of abnormal wear. The surface lamella structure appeared slightly corrosive with an open graphite lamella structure, as indicated on the photo below, taken in measuring point No. 2, manouvering side.

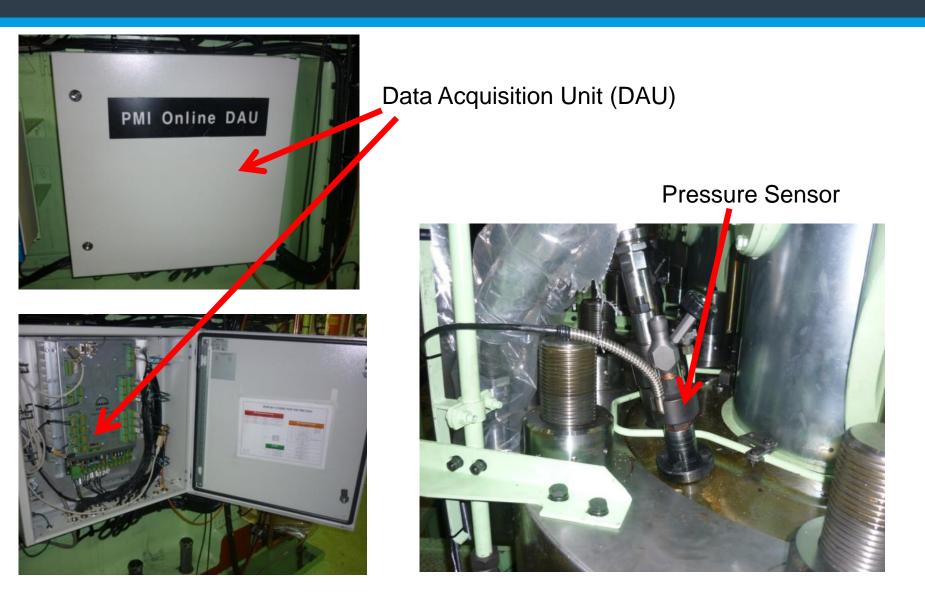


MAN Diesel & Turbo

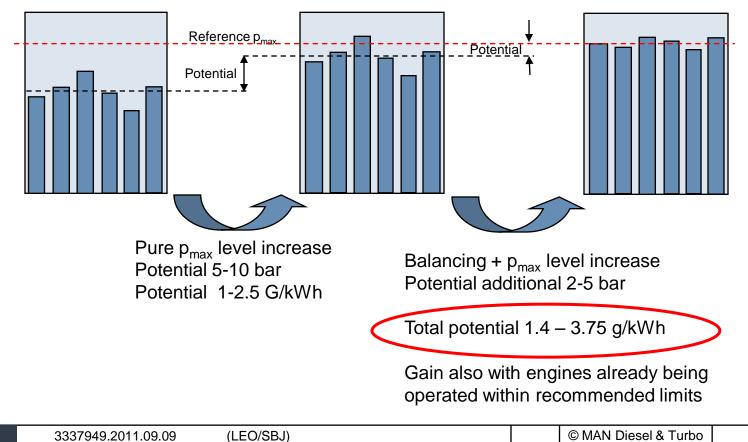
Cylinder Lubrication, Corrosion Control

6S80ME-C9.1 Test Bed, October 2010

Electrically Driven Hydraulic Power Supply (HPS)

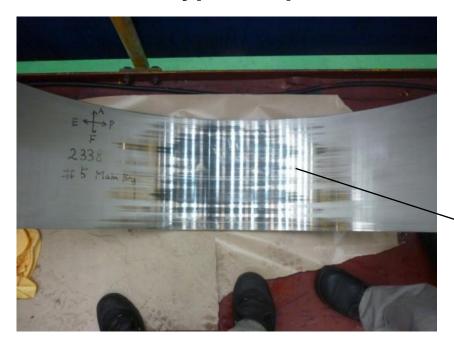

Electrically Driven Hydraulic Power Supply (HPS)

6S80ME-C9.1 PMI AutoTuning


MAN Diesel & Turbo

AutoTuning: Potential Fuel Reduction

Reduction in fuel oil consumption / CO₂ emission


1 bar increase in average $p_{max} \Rightarrow 0.20-0.25 \text{ g/kWh}$ decrease in fuel oil consumption

6S80ME-C9.1

Overhaul Inspection after Prototype Shop Trial: Main Bearing no. 5

Engines for Large Container Ships

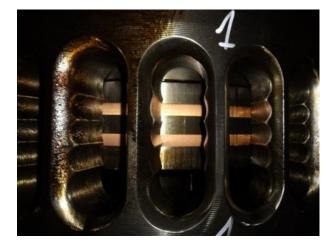
MAN Diesel & Turbo

THE


Recent Trend: S90ME-C for Container Vessels

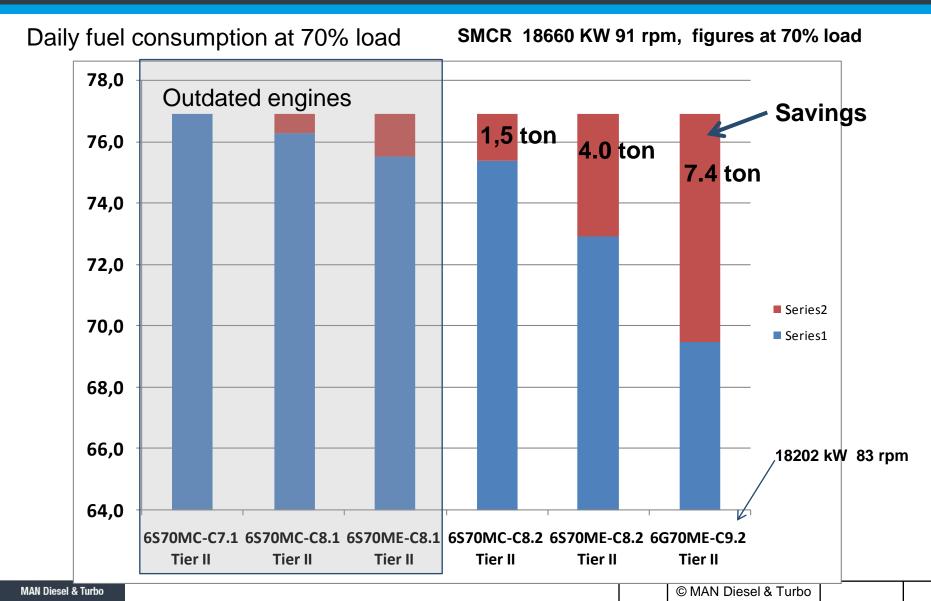
Order list for Large Container Vessels							essels				
No Shi			E	ngin	е	Mark	Owner	Capacity TEU	Yard	Hull no	Eng. Builder
18		9	S	90	ME-C	8.1	A.P. Moeller	7.000	DSME	4214->	Doosan
4		9	S	90	ME-C	8.2	Zodiac	9.000	DSME-Mangalia	4090->	Doosan
3		9	S	90	ME-C	9.2	Bernard Schulte	9.000	Shanghai Jiangnang CHI	1066A ->	HHI EMD
3		9	S	90	ME-C	9.2	Costamare	9.000	Shanghai Jiangnang CHI	1068A ->	HHI EMD
6		9	S	90	ME-C	8.2	Bernard Schulte/Ofer	9.000	HSHI	S592 ->	HHI EMD
6		12	S	90	ME-C	9.2	OOCL	13.000	SHI	2002 ->	HHI EMD
8 +	17	' 10	S	90	ME-C	9.2	SEASPAN	10.000	New Yangzi	2011-983 ->	CMD
7 +	10) 9	S	90	ME-C	8.2	Costamare	9.000	Sungdong	4010 ->	HHI EMD
4		9	S	90	ME-C	8.2	MSC	9.000	Sungdong		HHI EMD
6		8	S	90	ME-C	8.2	Hamburg Sued	9.600	HHI	2521 ->	HHI EMD
12		10	S	90	ME-C	9.2	NOL	9.000	DSME	conversion from K98ME-C	Doosan
10		11	S	90	ME-C	9.2	NOL	13.800	HSHI	S630 ->	HHI EMD
Tot	tal	87	sh	ips							

S90ME-C8&9 – Outline



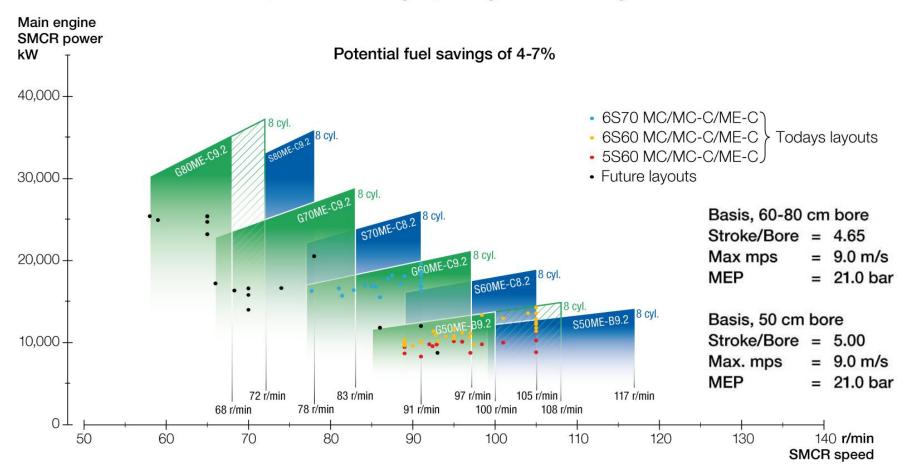
9S90ME-C8.1: Cylinder Condition

Cylinder no. 1 at 1,803 hours: Excellent Condition

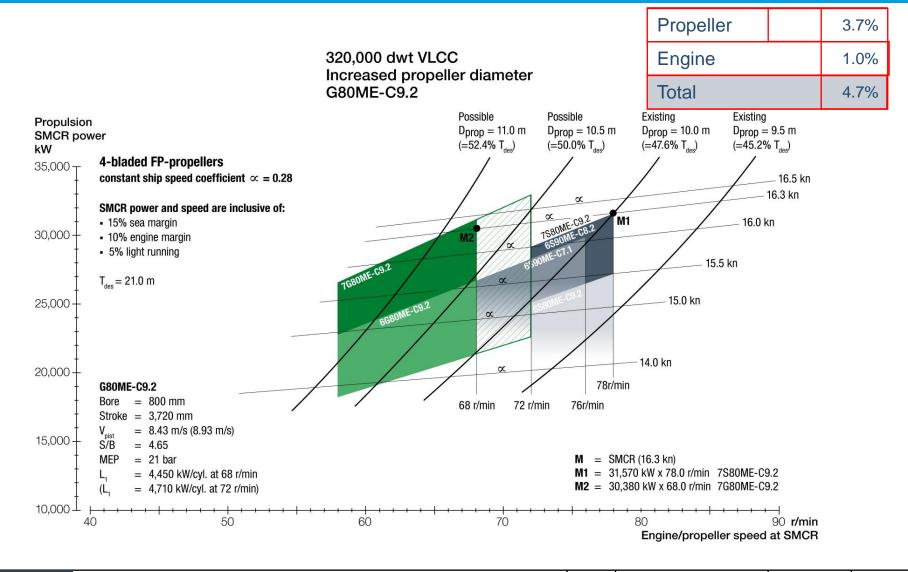

Service Experience of MAN B&W Two-stroke Diesel Engines

- Total Cost of Ownership for Large Marine
 Propulsion Engines
- New ECS Software for ME/ME-C Engines
- Operation on Low Sulphur Fuels
- Low Load Operation Update 2011
- Cylinder Condition Update New Engine Types
- G-type Engines Short Introduction

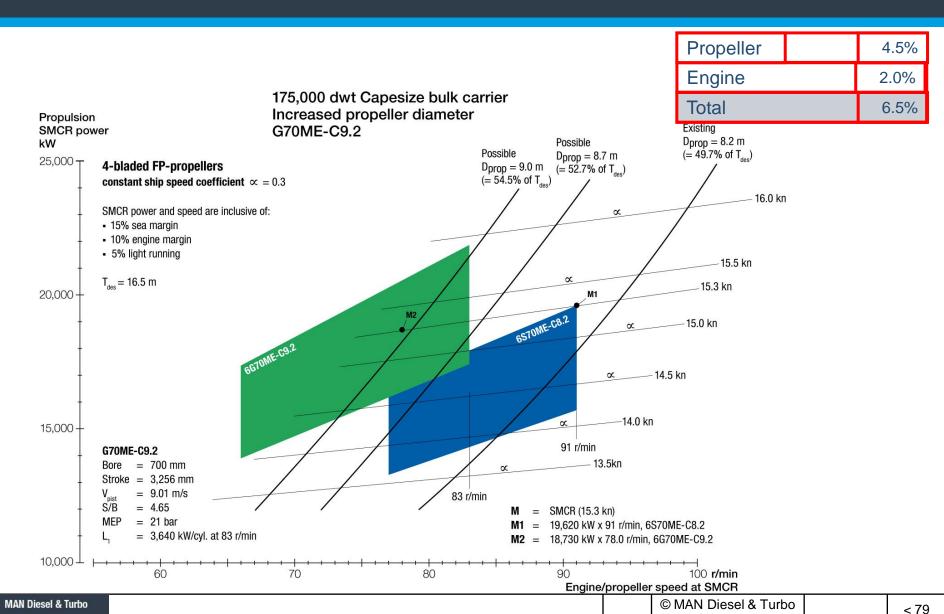
Daily Fuel Oil Consumption 6S/G70MC/E types and versions



Green Series of G-ME Engines



Layout diagrams of new Green series of G-ME engines Compared with existing Super long stroke S-ME engines


G80ME-C9.2

G70ME-C9.2

Thank You for Your Attention!

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.